Physics 566: Quantum Optics Problem Set #5 Due Friday Oct. 29, 2010

Problem 1: Boson Algebra (10 Points)

This problem is to give you some practice manipulating the boson algebra. A great source is the classic "Quantum Statistical Properties of Radiation", by W. H. Louisell, reprinted by "Wiley Classics Library", ISBN 0-471-52365-8.

(a) Gaussian integrals in phase-space are used all the time. Show that

$$\int \frac{d^2\beta}{\pi} e^{-A|\beta|^2} e^{\alpha\beta^*-\beta\alpha^*} = \frac{1}{A} e^{-|\alpha|^2/A}.$$

(b) Prove the completeness integral for coherent states

 $\int \frac{d^2 \alpha}{\pi} |\alpha\rangle \langle \alpha| = \hat{1} \text{ (Hint: Expand in number states).}$

(c) The "quadrature" operators in optics are the analogs of Q and P, $\hat{a} = \hat{X}_1 + i\hat{X}_2$. Show $\hat{U}^{\dagger}(\theta)\hat{X}_1\hat{U}(\theta) = \cos\theta \hat{X}_1 + \sin\theta \hat{X}_2$, where $\hat{U}(\theta) = e^{-i\theta\hat{a}^{\dagger}\hat{a}}$. $\hat{U}^{\dagger}(\theta)\hat{X}_2\hat{U}(\theta) = \cos\theta \hat{X}_2 - \sin\theta \hat{X}_1$,

Interpret in phase space.

- (d) Prove the group property of the displacement operator $\hat{D}(\alpha)\hat{D}(\beta) = \hat{D}(\alpha + \beta)\exp\{i\operatorname{Im}(\alpha\beta^*)\}$
- (e) Show that the displacement operators has the following matrix elements

Vacuum: $\langle 0 | \hat{D}(\alpha) | 0 \rangle = e^{-|\alpha|^2/2}$ Coherent states: $\langle \alpha_1 | \hat{D}(\alpha) | \alpha_2 \rangle = e^{-|\alpha + \alpha_2 - \alpha_1|^2/2} e^{i \operatorname{Im} \left(\alpha \alpha_2^* - \alpha_1 \alpha^* - \alpha_1 \alpha_2^* \right)}$ Fock states: $\langle n | \hat{D}(\alpha) | n \rangle = e^{-|\alpha|^2/2} \mathsf{L}_n \left(|\alpha|^2 \right)$, where L_n is the Laguerre polynomial of order n

Problem 2: The Wigner Function

The Wigner function for a single mode of the field described by a state $\hat{\rho}$ can be understood as the expectation value of a Hermitian operator,

$$\hat{W}(\alpha) = \frac{1}{\pi^2} \int d^2 \beta \, \hat{D}(\beta) \exp(\alpha \beta^* - \alpha^* \beta),$$

so that, $W(\alpha) = \langle \hat{W}(\alpha) \rangle = \frac{1}{\pi^2} \int d^2 \beta \, Tr(\hat{\rho}\hat{D}(\beta)) \exp(\alpha \beta^* - \alpha^* \beta).$

(a) Show that $\hat{W}(\alpha) = \hat{D}(\alpha)\hat{W}(0)\hat{D}^{\dagger}(\alpha)$.

Consider, $\hat{W}(0) = \frac{1}{\pi^2} \int d^2 \beta \, \hat{D}(\beta) = \frac{1}{\pi^2} \int dX_0 dP_0 \, \hat{D}(X_0, P_0)$, with $\hat{D}(X_0, P_0) = \exp\left[-2i\left(X_0\hat{P} - P_0\hat{X}\right)\right]$. To determine $\hat{W}(0)$, consider the position representation.

(b) Show that the matrix element of the displacement operator in the position representation is $\langle X'|\hat{D}(X_0,P_0)|X\rangle = \exp[iP_0(X_0+2X)]\delta(X'-X-X_0)$.

(c) Use this to show that $\hat{W}(0) = \frac{2}{\pi} \int dX |-X\rangle \langle X|$, and then argue that $\hat{W}(0) = \frac{2}{\pi} \hat{\Pi}$, where $\hat{\Pi}$ is the parity operator, familiar in wave mechanics.

(d) Show that in the number-state basis, $\hat{W}(0) = \frac{2}{\pi} \sum_{n=0}^{\infty} (-1)^n |n\rangle \langle n|$, and thus the Wigner function at the origin is $W(0) = \frac{2}{\pi} \langle \hat{\Pi} \rangle = \frac{2}{\pi} \sum_{n=0}^{\infty} (-1)^n p_n$, where p_n is the probability of finding n photons in the mode.

The above result shows that one can measure the Wigner function of a mode by counting the number of photons in many copies, collecting statistics, and determining the p_n .

(e) To get the Wigner function at any other point α , one need first displace the state away from the origin as in part (a), and measure the mean value of parity through photon counting on the displaced state.

Show:
$$W(\alpha) = \frac{2}{\pi} \langle \hat{D}(\alpha) \hat{\Pi} \hat{D}^{\dagger}(\alpha) \rangle = \frac{2}{\pi} \sum_{n=0}^{\infty} (-1)^n p_{n\alpha}$$
, where $p_{n\alpha} = \langle n, \alpha | \hat{\rho} | n, \alpha \rangle$, $|n, \alpha \rangle \equiv \hat{D}(\alpha) | n \rangle$.

Problem 3: A "Schrödinger cat" state.

Consider a superposition state of two "macroscopically" distinguishable coherent states, $|\psi\rangle = N(|\alpha_1\rangle + |\alpha_2\rangle), \ |\alpha_1 - \alpha_2| >> 1$, where $N = \left[2(1 + \exp\{-|\alpha_1 - \alpha_2|^2\})\right]^{-1/2}$ is normalization. This state is often referred to as a "Schrodinger cat", and is very nonclassical.

(a) Calculate the Wigner function, for the simpler case $|\psi\rangle = N(|\alpha\rangle + |-\alpha\rangle)$, with α real, and plot it for different values of $|\alpha_1 - \alpha_2| = 2\alpha$. Comment please.

(b) Calculate the marginals in X_1 and X_2 and show they are what you expect.

Problem 4: Thermal Light

Consider a single mode field in thermal equilibrium at temperature *T*, Boltzmann factor $\beta = 1/k_B T$. The state of the field is described by the "canonical ensemble", $\hat{\rho} = \frac{1}{Z} e^{-\beta \hat{H}}$, $\hat{H} = \hbar \omega \hat{a}^{\dagger} \hat{a}$ is the Hamiltonian and $Z = Tr(e^{-\beta \hat{H}})$ is the partition function.

- (a) Remind yourself of the basic properties by deriving the following:
 - $\langle n \rangle = \frac{1}{e^{\beta h \omega} 1}$ (the Planck spectrum) • $P_n = \frac{\langle n \rangle^n}{(1 + \langle n \rangle)^{n+1}}$ (the Bose-Einstein distribution). Plot a histogram for various $\langle n \rangle$.
 - $\Delta n^2 = \langle n \rangle + \langle n \rangle^2$. How does this compare to a coherent state?
 - $\langle \hat{a} \rangle = 0 \Rightarrow \langle \vec{E} \rangle = 0$. How does this compare to a coherent state?

(b) Find the *P*. *Q*, and *W* distributions for this field, and show they are *Gaussian* functions. For example, you should find $P(\alpha) = \frac{1}{\pi \langle n \rangle} \exp\left(-\frac{|\alpha|^2}{\langle n \rangle}\right)$. Show that these three distributions give the proper functions in the limit, $\langle n \rangle \rightarrow 0$, i.e. the vacuum.

(c) Calculate Δn^2 , $(\Delta X_1(\theta))^2$, $(\Delta X_2(\theta))^2$ using an appropriate quasi-probability distribution. Interpret Δn^2 as having a "particle" and a "wave" component.